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Abstract
In this paper we have studied the upper bound of the time derivative
of information entropy for non-Markovian and thermodynamically closed
system(s) using reduced model theory (RMT). The upper bound is calculated on
the basis of the Fokker–Planck equation and the Schwartz inequality principle.
Our calculation shows that the upper bound exhibits extremal nature in the
variation of system parameters such as noise correlation time, dissipation
strength. The present calculation also considers how the upper bound does
change if we increase the number of auxiliary variables involved in the RMT.

PACS numbers: 05.45.−a, 05.70.Ln, 05.20.−y

In the present paper we consider relaxation of a non-Markovian and thermodynamically closed
system, from a given non-equilibrium state to an equilibrium state. Non-Markovian stochastic
processes play an important role in noise-driven dynamical systems [1, 2]. In traditional
classical thermodynamics the specific nature of the stochastic process is irrelevant, but it may
play an important role in the process of equilibration for a given non-equilibrium state of
the noise-driven dynamical system. Thus an understanding of the interplay among frictional
force, random force, noise strength and external force, if any, has become a subject in the
recent past [1–5]. In this context, Shannon’s information measure [6]

S = −
∫

W(U, t) ln W(U, t) dU (1)

is a very important tool for the study of non-equilibrium and stationary states of a Brownian
particle. Here S is called information entropy, and W(U, t) is the continuous probability
distribution function in phase space. If one considers Boltzmann’s constant as the information
unit and identifies Shannon’s measure with the thermodynamic entropy, then the whole of
statistical mechanics can be elegantly reformulated by the extremization of S, subject to the
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constraints imposed by the a priori information one may possess about the system of interest
[6]. Very recent studies show that the information entropy and Fisher information, which
are proportional to the upper bound of the time derivative of S [3], are vital to the detailed
study of the noise-driven dynamical system [3–5]. Since the time evolution of the phase space
of the stochastic process is very sensitive to the characteristics of the frictional and random
forces, the specific nature of the random process has a strong role to play in deciding the upper
bound of the rate of change of information entropy. In an earlier paper [5] we have discussed
the time dependence of this upper bound, with the frictional force being proportional to the
momentum, and the Ornstein–Uhlenbeck noise process corresponding to the random force.
Thus it considers a thermodynamically open system, the random force and the dissipative
force having different origins. In view of the importance of the role that dissipation plays
while the system approaches a stationary state, it is worthwhile to consider a dissipation with
finite memory, in a thermodynamically closed system (dissipative memory kernel is related
to fluctuating force through fluctuation–dissipation relation), which can influence the upper
bound of the time derivative of S in non-equilibrium states. The objective of the present paper
is to address this specific issue.

For the calculation of the upper bound we consider a simple thermodynamically closed
system where the stochastic process is non-Markovian in nature. The generalized Langevin
equation of motion for this process can be written as

ẋ = p and ṗ = −ω2x −
∫ t

0
β(t − t ′)p(t ′) dt ′ + f (t), (2)

where x and p correspond to the position and momentum of a harmonic oscillator with
frequency ω. Here β(t − t ′) is the dissipative memory kernel, and f (t) represents Gaussian
fluctuations that satisfy the fluctuation–dissipation relation

〈f (t)f (t ′)〉 = kBTβ(t − t ′). (3)

kB is the Boltzmann constant and T is the temperature of the thermal bath. The system
described by equations (2) and (3) is sometimes termed the thermodynamically closed system,
and the stochastic process lacking relation (3) is accordingly called the thermodynamically
open system. Thus the present model differs from that of [5] in three aspects, namely,
fluctuation–dissipation relation, external force and nature of dissipation.

We are now in a position to introduce an interesting method which is known as reduced
model theory (RMT) developed by Grigoloni and co-workers [7] to study non-Markovian
stochastic processes in an extended phase space. Following [7] one can write the above
equations of motion in an equivalent form using n-number auxiliary variables (ζ1, ζ2, . . . , ζn)

as

dA

dt
= HA(t) + R(t), (4)

where

A =




x

p

ζ1

ζ2

...

ζn




, H =




0 1 0 0 0 · · · 0
−ω2 0 1 0 0 · · · 0

0 −�2
1 0 1 0 · · · 0

0 0 −�2
2 0 1 · · · 0

...
...

...
...

...
. . .

...

0 0 0 0 0 −�2
n −γn




(5)
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and

R(t) =




0
0
...

fn(t)


 , (6)

fn appearing in equation (6) is Gaussian white noise with 〈ζ(t)〉 = 0 and 〈fn(t)fn(t
′)〉 =

2Dnδ(t − t ′),Dn = γnkBT
(
�2

1 · �2
2 · · · �2

n

)
. The form of �2

i and γn are described in detail in
[7–9].

The Fokker–Planck equation corresponding to the above Langevin equation of motion
can be written as [1, 7]

∂W(A1, A2, . . . , An+2, t)

∂t
=

[
−

n+2∑
i=1

∂Fi

∂Ai

+ Dn

∂2

∂A2
n+2

]
W(A1, A2, . . . , An+2, t), (7)

where

Fi =
n+2∑
j=1

HijAj and F = HA.

It is now important to note that one can use the linear transformation (with αn+2 = 1)

U =
n+2∑
i=1

αiAi, (8)

on the Fokker–Planck equation (7), since the differential equation for each component of
A (4) is linear in terms of the phase-space variables. U being a linear combination of the
extended phase-space variables {Aj }, takes care of their stochastic behaviour in entirety. The
transformation (8) is generally used [4, 5, 10] with the purpose of reducing the dimension of
the Fokker–Planck equation for a linear stochastic process. The parameters α1, α2, . . . , αn+1

in the above equation are constants to be determined.
By virtue of the above transformation, the Fokker–Planck equation (7) becomes

∂W(U, t)

∂t
= ∂	nW

∂U
+ Dn

∂2W

∂U 2
, (9)

where

	nU = −
n+2∑
i=1

αiFi. (10)

Putting equation (8) into equation (10) and comparing the coefficients of Ai on both sides we
obtain n+2 algebric equation (for αi, . . . , αn+1 and 	n). The set {αi} and 	n are therefore known
[4, 5, 10]. Here we would like to point out that the linear transformation (8) can also be applied
directly to the Langevin dynamics described by equation (4) to derive the Fokker–Planck
equation (9). Multiplying αi on both sides of the time evolution equation of Ai (equation (4))
and then adding for all i we have

dU

dt
= −	nU + fn(t). (11)

This is the Langevin equation of motion corresponding to the Fokker–Planck equation (9).
The above equation implies that the time evolution equations corresponding to all Ai indeed
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can become again a Markovian process for the projection of U. In the weak noise limit
equation (11) becomes

dU

dt
= −	nU. (12)

The solution of this equation is

U(t) = U(0) exp(−	nt). (13)

The effective damping constant 	n in the above equation is finite for finite values of the
parameters in the set

{
�2

i

}
, ω and γn and it does not correspond to a particular eigenvalue

of the matrix H. The above equation implies that U(t) is finite at a finite time t, and it is
not the slow variable of the original dynamics since it satisfies the initial condition taking the
contribution of all the modes and 	n is not smallest eigenvalue of the matrix H. Thus U in
equation (13) considers the contribution from all the variables at arbitrary time. Hence the
linear transformation (8) being used to reduce the Fokker–Planck equation (7) into (9) works
at any time.

The Fokker–Planck equation (9) can be rearranged into the general form of the continuity
equation

∂W(U, t)

∂t
= − ∂jc

∂U
, (14)

where the current, jc = −	nUW − Dn
∂W
∂U

. We shall now define the upper bound for the time
derivative of information entropy using equations (1) and (14). The time evolution equation
for S can be written as

dS

dt
=

∫
dU

∂jc

∂U
ln W. (15)

Performing partial integration on the right-hand side of the above equation and then putting
the natural boundary conditions, jc|boundary = 0 and jc ln W |boundary = 0, one obtains

dS

dt
= −

∫
dU

1

W
jc

∂W

∂U
. (16)

Identifying g as jc/
√

W and h as ∂W
∂U

/√
W we can apply the Schwartz inequality | ∫ dUgh|2 �∫

dU |g2| ∫ |h2| dU to the integral (16). This yields an upper bound for the rate of information
entropy change

dS

dt
� UB(t)(n) (17)

where

UB(t)n =
(∫

dU
j 2
c

W

)1/2
(∫

dU

(
∂W

∂U

)2 1

W

)1/2

. (18)

The strict equality is valid if and only if g is not a constant multiple of h. The second factor of
the right-hand side in the above equation is the square root of the Fisher information (I) [3].

To find the explicit time dependence of the upper bound, we use the following standard
solution [1, 11] of the Fokker–Planck equation (21):

W(U, t) = N exp

[
− U 2

σn(t)

]
(19)

where σn(t) = 2Dn

	n
(1−exp(−2	nt))+σn(0) exp(−2	nt), and N is the normalization constant.

Here we have chosen the initial value of U as U0 = 0.0. Now by making use of equation (20)
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in equation (19) we finally obtain an explicit time dependence of the upper bound U
(n)
B (t) for

the rate of entropy change (given by equation (19)) as,

U
(n)
B =

[
	2

nσ
2
n − 4	nσnDn + 4D2

n

2.0σn

]1/2 [
2

σn

]1/2

. (20)

It can be rearranged into another form of the bound [3] as

U
(n)
B = 1

2
I

d〈U 〉
dt

, (21)

since I = 2/σn and d〈U 2〉
dt

= 2Dn − 	nσn.
The above form of upper bound describes how it depends on noise correlation time,

strength of dissipation, system frequency and number of auxiliary variables introduced in
RMT for the non-Markovian system. For example, we choose the model memory function
for the β(t) appearing in equation (2) as an exponentially decaying form [12]. It can be
represented as

β(t) = γ

τ
e− |t |

τ (22)

where γ is the dissipation parameter and τ corresponds to the correlation time of the coloured
noise process. Then the two-time correlation of f for the thermodynamically closed system
in equation (3) becomes

〈f (t)f (0)〉 = γ kBT

τ
e− |t |

τ . (23)

The above equation implies that for the present example f (t) in equation (2) corresponds to
the Ornstein–Uhlenbeck noise process [1]. Thus, effectively, we study the thermodynamically
closed system given by equation (2), along with equations (22) and (23), by increasing the
auxiliary variables one by one. First of all we consider the simplest form of RMT with only
one auxiliary variable ζ1. Then equation (4) yields

Ȧ1 = A2, (24)

Ȧ2 = −ω2A1 + A3, (25)

Ȧ3 = −γ

τ
A2 − 1

τ
A3 + f3. (26)

For the above Langevin equation of motion the Fokker–Planck equation (7) becomes

∂W(U, t)

∂t
= ∂	1W

∂U
+ D1

∂2W

∂U 2
, (27)

with

	1 =
(

− r

2
+

√
r2

4
+

q3

27

)1/3

+

(
− r

2
−

√
r2

4
+

q3

27

)1/3

,

where

q = ω2 +
γ

τ
− 1

3τ 2
r = −2ω2

3τ
+

γ

3τ 2
− 2

27τ 3
and D1 = γ kBT

τ 2
.

To keep 	1 positive we choose r < 0 and
(

r2

4 + q3

27

)
> 0 since the distribution function W

must vanish at the boundary. Thus the Fokker–Planck equation (27) describes the original
non-Markovian system through the appearance of the noise correlation time in both 	1 and
D1, the effective dissipation and diffusion coefficient, respectively. The effective dissipation
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Figure 1. Plot of U
(n)
B (t) versus time t using equation (20) for σ(0) = 0.0, kBT = 0.5, ω =

2.0, τ = 0.25 and γ = 1.0. n has values 1, 3 and 5 for the solid, dotted and dashed curves
respectively. In the inset U

(1)
B is plotted versus t for the same parameter set as in the main figure:

(a) τ = 0.1 and (b) τ = 0.3 (units are arbitrary).

appearing in [5] is not a function of the noise correlation time τ and ω, but is same as the
constant dissipation parameter γ . It makes the present model much more general than the
model described in [5].

Thus one can now calculate the upper bound of the time derivative of information entropy
using the values of 	1 and D1 in equation (20) for one auxiliary variable (n = 1). Repeating
this calculation it can be calculated for any n. The time evolution of U

(n)
B is shown in

figure 1. The upper bound in each case monotonically decreases to the limiting value zero. It
so happens because of the fact that with the increase of time the random force becomes more
effective in the dynamics and consequently both the rate of change of width of distribution
function

( d〈U 2〉
dt2

)
and Fisher information (I) decrease. At equilibrium I reaches a minimum

value and d〈U 2〉
dt2 becomes zero and thus U

(n)
B is zero in the long time limit. Figure 1 shows

that the relaxation time of coloured noise-driven thermodynamically closed systems depends
on the number of auxiliary variables used in the RMT. It increases with the increase of the
number of auxiliary variables, and the value of the upper bound becomes higher for larger
n at a given time since effective damping decreases with the increase of n. In the inset of
figure 1 we plot U

(1)
B versus t for different noise correlation times to examine how τ affects

the equilibration time. It shows that the smaller the noise correlation time, the faster is the
relaxation to equilibrium from a non-equilibrium condition. As the effective damping constant
decreases with the increase of the noise correlation time, the relaxation time increases with
the increase of τ . But the equilibration time is not affected by the noise correlation time in our
earlier paper [5]. However, the upper bound is calculated using equation (20) at time t = 2.5
for different values of noise correlation time and is plotted in figure 2. Here, with increasing
τ , we find the upper bound to increase first till it attains a maximum and then decrease. But
in the previous model [5], UB passes through a minimum in the presence of a constant force,
and without the constant force the bound monotonically increases. Thus in the present model,
τ has a different role in the persistence of the non-equilibrium situation.

We now examine the influence of the constant dissipation parameter γ on the upper bound.
In figure 3 we plot the variation of U

(1)
B versus γ . The upper bound first decreases followed by

an increase after passing through a minimum. But it decreases monotonically in the previous
model [5] since the decrease of the rate of change of the width of distribution function

( d〈U 2〉
dt

)
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Figure 2. Plot of U
(1)
B (t) versus τ using equation (20) for the same parameter set as in figure 1 at

time t = 2.5 (units are arbitrary).
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Figure 3. Plot of U
(1)
B versus γ using equation (20) at time t = 2.5 for the same parameter set as

in figure 2 and τ = 3.0 (units are arbitrary).

very strongly dominates over the increase in Fisher information with the increase of dissipation
parameter γ . However, in the present model the upper bound increases because of the decrease
in effective damping with the increase of γ .

In conclusion, it may be said that we have considered the passage to equilibrium, from
a given non-equilibrium state, of a coloured thermal noise-driven harmonic oscillator system.
It is a thermodynamically closed system since in the present model the random force and
frictional force have a common origin, and they follow the standard fluctuation–dissipation
relation. Here we have studied the upper bound of the rate of change of information entropy
in the non-equilibrium state based on the RMT, the Fokker–Planck description of the noise
processes and the Schwartz inequality principle. In this paper we have derived a general
formula by which one can calculate the bounds for a large number of auxiliary variables
introduced in the RMT. The upper bound of the time derivative of the information entropy
shows extremal behaviour of the variation of system parameters such as the noise correlation
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time (τ ) and the time-independent dissipation parameter (γ ). The noise correlation time
affects the equilibration time in addition to the value of the upper bound. Since coloured noise-
driven thermodynamically closed systems are found in many situations in biology, physics and
chemistry such as barrier crossing dynamics, stochastic resonance, reaction diffusion processes
etc, we hope that our present studies will be useful for the understanding of experimental results
in these areas.
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